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The radiation diffuston equation IS solved by the limte element method. The energy 
denstties arc pomt centered. These are integrated mto a program architecture whtch requtres 
zonally averaged quantities. Numerical results are presented which compare the scheme wtth 
existing finite difference techniques for zonal variables. Finite elements give better results for 
transport dominated problems on non-orthogonal meshes such as might be generated by 
Lagrangtan hydrodynamic distortions ‘(1 1988 Academic Press, Inc 

1. INTRODUCTION AND MOTIVATION 

Kershaw [ 1) described finite difference schemes which use zonally averaged 
quantities. These schemes may cause anomalously large transport when used on 
sufftciently non-orthogonal grids. Such grids commonly appear in practice; they 
may also be generated from distortions due to Lagrangian hydrodynamics. The 
impetus for pursuing the present work is to devise a method which is more indepen- 
dent of mesh irregularities. 

The finite element method (FE) has given accurate results over irregular 
domains. In this paper FE is applied to a parabolic equation on an irregular grid. 
Specifically, the radiation diffusion equation is solved on a moving Lagrangian 
mesh. If the radiation field is nearly isotropic, an integration over the angle of 
propagation reduces the equation for the photon energy density to parabolic form. 
In our application the relevant equations are 

2 = v (D,.Vu,.) + y,,(B,.( T,) - u,.) + P (1) 

where u,,, the radiation energy density per frequency group, and T,, the electron 
temperature, are the dependent variables. The cylindrical variables (R, Z) and the 
photon frequency, v, are the independent variables. Inclusion of the Fokker-Planck 

385 
002l-9991188 $3.00 

Copyrvght r) 1988 b) Academx Press. Inc 
All rights of reproduction m dny form rescrwd 



386 SHESTAKOV. HARTE, AND KERSHAW 

approximation for scattering [Z] introduces a second-order operator in frequency 
space in Eq. (1) that is applied to u,. Since the operator depends on T,, self-con- 
sistency requires that the energy changes in the radiation field due to scattering be 
reflected in the electrons. This adds a corresponding term to Eq. (2). In this paper 
we ignore scattering effects and simply define the diffusion coefficient, D,, and the 
coupling coefficient y,, in terms of the photon absorption mean free path, I,,: 

D ,, = cl,,/3 and i’,, = c/l,., (3) 

where (* is the speed of light. Assuming local thermodynamic equilibrium, y,, = cp~,, 
where p is the mass density and K,, is the absorption opacity. The photon total 
mean free path is the inverse of the sum of pi,. and the scattering coefficient g, [2]. 
In the following, we set (T, = 0 and use the definitions in Eqs. (3). Time is nor- 
malized to r = lO-8 s, all distances are in centimeters; hence c = 300. The mean free 
path I,, and the specific heat c,, are given by an equation of state; B,(T,) is the 
Planck function. Both 11 and T, are in keV; u,, has units of keV3 per cm3 while 
CI = 0.00211 is a normalizing constant in units of energy per keV4. Energy is 
measured in units of 1016 ergs. The Lagrangian time derivative on the lhs of Eqs. ( 1) 
and (2) is approximated by time-differencing the variables on a mesh that moves 
with the fluid. 

The terms P and Q denote other physical processes such as electron-ion 
coupling, radiation PdV work, and scattering which are solved by operator split- 
ting. Their solution is not discussed here, but the effects are incorporated into the 
scheme as external sources. 

Except for the linearization of B given below, fully implicit time differencing is 
used in order to ensure numerical stability and to avoid the oscillations that can 
occur for short wavelength modes [ 11. In most applications, u,, quickly equilibrates 
with the matter (7, ti I ). Fully implicit time differencing is able to obtain what is 
effectively a succession of steady states of u,, states that vary with changes in the 
boundary conditions. In particular, in the limit of infinite time steps, the scheme 
computes the steady state answer in one time step. Schemes such as 
CrankkNicholson require several time iterations to reach the desired state. 

In the following, the subscript “e” for the electron temperature is dropped. Let T” 
and ~1~ respectively denote the numerical value of the temperature and the radiation 
energy at the end of the nth time level: neglect the operator P. Given T”- ‘, 
operator splitting for Q generates an intermediate temperature T’. n ~ ‘; the latter is 
advanced to T” by coupling to the radiation field. The frequency spectrum is 
discretized into N,. groups. Let u,., denote the average energy in the ith group; the 
energies are coupled by the temperature equation. The “partial temperature 
scheme,” which we now describe, reduces Eqs. (1) and (2) to N, systems of two 
scalar equations. Assume that each u,,, contributes separately to the temperature 
change, T” - T’.” ‘: 

T” _ T’.” , = T,\> - T,\ , + TvL,p, - ... + T, - To, (4) 
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where T,v,, = ?“, To = T’.“- I, and T, is the intermediate temperature due to the 
coupled advancement to LI,,,. This results in the N, equations: 

& _ Un I 

At 
=V.(DVu”)+y(B(T,)-u”) (5) 

T,- T,-, c 
At 

= -zAvy( B( T,) - u”), (6) 

where the subscripts I’, are dropped. Equations (5) and (6) are solved N,, times per 
time step, once for each group energy, u,,,. Each solution computes a new 
“partial T,.” 

The contribution to the integral in Eq. (2) has been approximated by a midpoint 
rule in Eq. (6). The Planck function is proportional to \13(exp(v/T,) - 1) ‘; its 
integral to T”, 

1” ~7,(T)h~=T”l“‘~ .u3&‘(r‘-1). 
vi- I r,-, 7- 

The group energies are advanced in random order in order to minimize biasing 
the solution. For example, consider the extreme case in which energy is copiously 
added to only one group u,.~. If the energies were advanced in a monotonic order, 
e.g., increasing ~1,. all groups for which v, < \sk would be unaffected by the energy 
deposition until the subsequent time step. The calculation may develop significant 
errors if (as is commonly the case) these “lower” groups are tightly coupled to the 
matter due to their short mean free path. 

In the partial temperatue scheme, the Planck function is linearized about the 
latest temperature, 

(7) 

and this is substituted into Eqs. (5) and (6). The linearization renders Eq. (6) linear 
in T,- T,-,. One solves for this temperature change and substitutes the result into 
Eq. (5). The result is a scalar equation involving U” and known quantities of the 
form. 

At-‘(u’z-f4”-’ )=v~(Dvu”)-pu”+s (8) 

Although the scheme is stable, At is governed by accuracy considerations. 
Controls are provided which decrease At if either (T”- T”-‘)/T+’ or 
( T, - T” ’ )/T’ ’ exceed specified tolerances. Indeed, such restrictions are required 
to render Eq. (7) a good approximation. 

In our program, the mesh coordinates are labeled by logical K, L variables: 
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Z(K, L), R(K, L), with 1 < KQ &WAX and 1 d L < LMAX In (K, L) space the grid 
is rectangular; in (R, Z) space, the mesh consists of quadrilaterals. Azimuthal 
symmetry is assumed. The program environment external to the processes described 
here require, and possibly update, zonally averaged values; c, and 1 are constant in 
a quadrilateral. For example, P and Q use zonal quantities. In contrast, the FE 
computes nodal values for u and T. An important part of this paper is to integrate 
these nodal calculations into other zonal physics. 

The following section describes how the finite element method is applied to the 
solution of Eqs. (5) and (6). Sections 2.1 and 2.2 discuss the solution of Eq. (8). The 
necessity of coupling the nodal representation of u to a similar representation for T, 
is proved in Section 2.3. Section 2.4 presents the numerical analog of physical terms 
such as the energy exchanged with the matter. Section 3 describes several 
procedures required to couple the radiation diffusion package to other zone 
centered physics equations; the section is only tangentionally linked with the 
principal subject of this paper. Nevertheless, it contains numerical results which are 
important in order to successfully integrate the scheme into a larger Lagrangian 
environment. Four test problems are presented in Section 4. The FE results are 
compared with analytic solutions or with the finite difference scheme [ 11. Section 5 
is a conclusion. 

2. IMPLEMENTATION OF THE FINITE ELEMENT METHOD 

2.1. Discretkation of Equation 

Each quadrilateral zone is bisected into triangles. Triangulation strategies are 
discussed below. Since coefficients such as 1 and c, are piecewise constant on zones, 
hence piecewise constant on triangles, only linear finite elements are used. Since 
distinct quadrilaterals may define different materials, with correspondingly extreme 
changes in I,, it would be incorrect to impose smoothness of derivatives of the trial 
functions [ 31. 

Specifically, if KL = KMAX * LMAX denotes the total number of mesh points, 
consider the function space 

Each element of F is of the form 4, = a, + Rb, + Zc,. The coefficients are chosen so 
that 4, equals unity at the jth grid point and vanishes at all other grid points. By 
construction, 4, is identically zero on triangles which do not have thejth grid point 
as a vertex. The unknown functions are given in terms of the basis functions 4,(x), 

KL 

un = c u,“q+, 

,= I 
and T”= F T,“&. (9) 

,=I 
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As previously mentioned, the program requires zonally averaged quantities which 
are supplied using 

<u”>,=s 
YI 

RdRdZ, (10) 

where q, denotes the ith quadrilateral. Note the extra R factor in the metric. The 
physical processes P of Eq. ( 1) such as Compton scattering and P dV work do not 
involve any spatial derivatives. The same operator splitting methods which were 
applied to (u”), are now applied to u,“. On the other hand, process Q of Eq. (2) 
introduces coupling to the ion temperature, a zonal quantity. We show below that 
if T is left as a zonal variable, and coupled to a nodal u in the obvious way, 
that physically relevant choices for I,, lead to anomalously large transport 
due to numerical diffusion. Consequently, T must also have a point-centered 
representation. 

Equations (5) and (6) hold in some domain Q with boundary &2. The FE is 
implemented using the “weak” form of the pde, that is, each of the equations is 
multiplied by dk for k = 1, . . . . N and integrated over the domain, where N ( < KL) 
is the number of unknown grid values. Equation (6) is discretized analogously. 
“Lumping” [3], which is described below, allows us to solve for the unknown 
temperature change as in the previous discussion. This is substituted into the weak 
form of Eq. (5) and eliminates the unknown 7”‘. This gives the weak form of 
Eq. (81, 

271 Q&.[Arr’(~4”-u 
J 

npl)-V.(DVu”)+ju”-s]RdRdZ=O, (11) 

where u” is defined in Eq. (9) and k = 1, . . . . N. Any sources or sinks of radiation of 
the form G, - c2u added to the rhs of Eq. (5) are easily assimilated into Eq. (11). 
The transport term is integrated by parts, 

-j d,V.(DVu”)RdRdZ= -j-nq4~DW’Rdl+j. DV@,.Vu”RdRdZ, (12) 
R R 

where ii is the unit outward normal, and dl is the incremental arc length. 
Since uN is given by Eq. (9), Eq. ( 11) leads to a linear system 

Ax=b (13) 

for the unknowns {u;}. Part of A consists of the stress matrix, S, whose elements 
are 

&,=j DV&Vq$RdRdZ. 
R 
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This matrix is symmetric and non-negative definite. It can be shown that if all 
triangles have interior angles <KC/~, that the diagonal elements Skk are positive and 
off-diagonal elements are non-positive. In this case, S is an M-matrix and monotone 
[4]; i.e., S ~ ’ has all positive elements. A triangulation strategy which minimizes the 
occurrence of obtuse angles enhances positivity of S ~ ‘. 

Positivity is desirable from a physical standpoint. In Eq. (13) x denotes the 
vector of unknown energy densities U; which are meaningful only if positive. The 
rhs depends on u; ’ . The matrix A IS a sum of AtS and a multiple of the mass 
matrix, i.e., the matrix resulting from discretizing the term j +k~n. In contrast to 
finite difference schemes, strict adherence to the U” representation of Eq. (9) gives a 
nondiagonal mass matrix since 

s c,4,u”RdRdZ=~ 
R 

1 d/i+,RdRdZ u;. 
/ R > 

Trial functions, d,, whose support intersects the support of dk yield positive off- 
diagonal mass matrix elements. By “lumping” one approximates 

f q5ku”RdRdZ+u;f cjkRdRdZ. 
R s R 

The resulting matrix is diagonal with positive diagonal elements. The signs of all 
the terms multiplying the mass matrix, Ar ’ and /?, add to the diagonal dominance 
of S, A is positive definite for any triangulation and an M-matrix if no triangle has 
an interior angle larger than n/2. 

2.2. Boundarjy Conditions 

On SQ three possible conditions arise; 

(a) Dirichlet condition, u = uh along dQ, , 

(b) Neumann condition. -D&/h = u, along aQZ or 

(c) mixed or “Milne” condition, u + (21/3) du/Sn = u,,, along da,, 

where dQ, is a subset of SR. Physically, either the radiation energy, the flux, or a 
Milne condition is being specified. If u,, = 0, then (c) states that the outgoing flux 
equals c times one-half the energy at the boundary. The latter is the correct physical 
condition to impose at a vacuum interface. 

The implementation of these conditions is straightforward. If (a) is given and x,, 
is a grid point on dQ,, then k#jl in Eq. (11). If N, such grid points lie on an,, 
then N= KL - N, is the number of unknowns. In this case, u(x,,) is a given 
boundary condition. However, 14 and T are each still given by KL grid values, 
Eq. (9). The new temperature values T” need to be computed on aQ, . 

If condition (b) or (c) is given, then D&/an, is given in terms of u( or u,. The 
value is substituted into the line integral of Eq. (12). Lumping is used if a Milne 
condition is specified. Condition (b) or (c) is assumed to be piecewise constant on 
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the line segments between grid points lying on 22, or d&J,, whereas Dirichlet 
conditions hold on points. 

In all cases, the integration is performed only over Q, the domain of interest. 
There are N unknowns to compute for u; ; order (A) = N. 

2.3. Necessity of Nodal Description of T 

In this section, we demonstrate the importance of defining both ZJ and T as nodal 
functions. This necessity is proved analytically and verified computationally in a 
model problem. The result is not needed for the subsequent sections. 

In our application, zonal quantities need to be supplied to other processes at the 
end of the time step. Since the only spatial derivatives in Eqs. (5) and (6) appear in 
the V. (DVu) term, one might reason that only a nodal representation of u is 
sufficient and that T may retain its zonal description. 

Consider the following model problem. In the limit of small I, the transport term 
is insignificant. Set D = 0 in Eq. (5) and assume a linear Planck function, 

B( T) = B, + Bb( T- T,), 

where TO, E,, and Bb are constants. After changing variables, in the limit of small 
At, Eqs. (5) and (6) become 

?,r=y(B,e-r)+c, (14a) 

d,e= -y(B,e-r)-c,, t 14b) 

where r and e respectively denote the radiation and electron energies (r =ctAvu, 
e = c,,T) and B, is the ratio of specific heats (B, = ctAvBb/c,.). Note that the 
hydrodynamic effects are also neglected. 

Assume that Eqs. (14) hold for 0 <X <X,,,, and t > 0, with given initial con- 
ditions and set c,, = 0. In the context that e is a zonal variable and I is known on 
points, the FE may be applied as follows. Given a discretization {x,), consider the 
“tent” functions {4,(~)), where b,(x) is linear in x and 4,(x,) = 6,,. Furthermore, 
define d*(x), where d,- and d,+ are respectively the left and right halves of 4,; i.e., 
d;(s) = 0 if .Y does not belong to (x-, , x,], and d,+(x) = 0 if x does not belong to 
[.Y,,.Y, + , ). Since r is given on points, r = {r,} while e = {e, + , z ) where 

x,)= s 

c, f I 
e. 

‘1 

Use implicit time differencing in Eqs. (14) and form three equations for J q5,r, i ~+4,” e, 
and s 4,-i, e. Using lumped mass matrices for r, s qS,r(.x) = r, s 4,. The implicit 
equations for ry + ’ and e;:,1_ , can be inverted to give the linear system, 

r;l+‘=a,e;_, l+b,r;+r,e;+, z tl5a) 

e rr + I 
,+I.Z=4e:‘-, z+f,r~+g,e:+,.,+lz,r~+,+i,e:+,, (15b) 

5x1 76 ?-II 
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where the coeffkients a, b, . . . . depend on Ax, At, etc. These equations are equivalent 
to solving the following system with an explicit difference scheme 

d,r=&B,e-r) 

cY,e = -/I( B,e - r) + AtAx2gy B, J,,e/4d, 

where /3=y( 1 +yAt(l + B,))-’ and d= 1 +yAt B,. The scheme has a numerical 
diffusion coeflicient which may also be expressed as 

D, = At Ax*y* B,/4p(yAt), 

where p(z) is quadratic in z, p(0) = 1, lim; _ ~ p(z) = +a~. The numerical diffusion 
is innocuous; if it is dominated by the physical diffusion coefficient D as defined in 
Eq. (3L 

D 3 Ax ’ yAtB, L!=- - 
( > D 4 1 po’dr)’ 

Note that D,/D << 1 if At $ 1, At $ 1, or Ax < 1. The last inequality usually is not 
satisfied since the diffusion limit of the radiation transport equation is derived 
assuming a short mean free path. If I4 Ax, the above analysis signals that D, may 
dominate for some cases if At is chosen appropriately. The cases arise, if the ratio of 
specific heats, B, B (Ax/l)’ $ 1. 

This analysis is verified computationally. Restore the transport term in Eq. (14a) 
and consider the system 

il,r=S.(Dd,r)+y(Be-r)+b (16a) 

J,e = -y( Be - r) - 6, (16b) 

where b, B, and 1 are constant; I is used to define D and 7 as in Eq. (3). The 
boundary conditions model symmetry at the left and a vacuum on the right: 

d,r=O at x=0 and r+fJ,r=O at x=1. 

The exact solution is 

r, = 2 r,(t) cos k,x 

e, = -(b/yB) + c e,(t) cos k,x, 

where k,, i= 1, 2, . . . . solve 

cot k = 21k/3. 
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The Fourier coefficients solve the system 

1 
-1-kfD/y 

Thus, r,, e, - e ” where 

Define the total energy and energy change, 

E(f)=j’ (r(x, t)+ ( e x, t)) dx = -(b/yB) + (21/3) 1 (r,(t) + e,(t)) cos k,. 
0 

The energy change is obtained by adding Eqs. (16) and integrating 

AE=E(f)-E(O)= -(c/2)xcosk, s ‘r,(s)ds. 
0 

Since energy leaves the problem only at x = 1, a numerically computed AE consists 
of both the physical transport losses and anomalous numerical diffusion. As I 
decreases, the transport term in Eq. (16a) becomes less significant and the energy 
lost at .x = 1 is correspondingly smaller. A method with a large numerical diffusion 
coefficient will let energy escape at a faster rate. The above analysis predicts that a 
nodal u coupled to a zonal T will be inaccurate if Ax ti 1. 

Two 1D test programs were written to solve Eqs. (16). The first, ZT, uses zone 
centered temperatures, the second, PT, defines e (equivalently T) on points. The 
radiation energy r is always defined on points. The programs were initialized using 
only one eigenfunction, cos k, x. The following parameters were used: B, = 2, 
/=3x 10p4; hence D=3x IO-‘and y=106. 

The initial energy E(0) =4.45512. Both programs used Ax= lo-*, thus 
(Ax/l)* z 103. Three successively increasing values of yAt are used; these choices 
assume that the second one falls in the range where the analysis predicts D, 9 D. 

Run 

TABLE I 

Comparison of Energy Diffusion between Zonal (ZT) and Nodal (PT) Schemes 

Prog. YAf N, A-C AE DJD 

1 PT IO-’ lo4 -4.711 x 10-g -4.854 x 10-g 
1 ZT lo-’ IO4 -4.711 x10-9 -1.045 x 10-s 1.6 x 1O-2 
2 PT 8.33 x IO-' 10' -3.926x 1O-b - 3.926 x 10 -6 
2 ZT 8.33 x IO-' 10’ - 3.926 x 10 -b -4.384 x lo-” 95.33 
3 PT 10” 10’ -4.597 x 10-Z -4.596 x 10m2 
3 ZT 101 10’ -4.597 x IO-' -4.782 x lo-> 2.7 x 10 -* 
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The programs are run N, cycles, the numerical energy change, AE, is computed and 
compared with the exact value, AE,. Results are given in Table I. Note that for the 
second run, DJD z 100 which is approximately the amount of extra energy that 
exited the problem in the time allowed. We conclude that T must be a nodal 
variable as in Eq. (9). 

2.4. Energy Conservation, Edit Quantities 

The FE scheme conserves the same quantities as the differential equations. In this 
section, we derive precise analogs for the change in radiation energy, for the energy 
transported, for the energy coupled, etc. First consider global quantities. At each 
point where u is to be computed, Eq. (5) becomes 

s (q5k(u-~~o-yAt(B-u))+AtDVc$k.Vu)RdRdZ=At 
I 

&DVu.ij Rdl, (17) 
R m 

where k = 1, . . . . N and N is the total number of unknown grid values uk. The old 
grid function is marked with a superscript. Define 

k= I 

If there is no Dirichlet data, @ = 1 throughout $2, otherwise, Y= 1 - @ defines a 
piecewise linear function which equals 1 at the Dirichlet grid points and vanishes at 
the others. Sum Eq. (17) for k= 1, . . . . N, then 

j@(u-u”)=At 
[ 

j(@y(B-u)-DFWVu)RdRdZ+j@DVwtiRdl . 1 (18) 
Add 1 !P(u - u”) to both sides (note 1 = @ + Y), then 

j(u-u’)=Atjy(B-u) 

+ j [Y(u-u”-yAt(B-u))+AtDV’Y.Vu]+At j@DVuGiRdl. (19) 

Multiplication by LY Av converts the units into energy. The lhs is the global energy 
change during the time step. The rhs respectively consists of the total energy 
exchange with the matter, the energy necessary to maintain u at its prescribed value 
(the Dirichlet data), and the energy escaped through the walls. The sign of the 
energy escaped depends on the Neumann or mixed boundary condition. Since the 
FE equations are also applied to Eq. (6) at every grid point, these can also be 
summed for all dk(x), k = 1, . . . . KL, 

c,(T-To)= --crAvAt y(B-u). s (20) 
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Thus, the first integral on the rhs of Eq. (19) is more conveniently computed from 
the change in electron energy, i.e., the Ihs of Eq. (20). This is modified if T is given a 
prescribed value. 

One likewise has pointwise energy conservation. Consider Eq. (17), where xk is 
an interior grid point. On the lhs, the first term is the energy change; the second or 
analogously s dkc,( T- To), is the energy exchanged, and s At D V& .Vu is the 
energy transported. The rhs of Eq. (17) vanishes when xk does not fall on JQ. Each 
of the above terms must be computed as they were discretized. For example, for 
lumped mass matrices, 

~9,(~-~“)=(~k-~~)~~k. 

One may also derive conservation relations for subregions contained in Q. 
Assume for simplicity that 52’ is a closed subregion whose boundary does not 
intersect &G?. Let 

Q=C4kr 
k 

where the sum is taken only over the functions dk corresponding to grid points xk 
lying in Q’ or its boundary. Hence, 0 = 1 throughout Q’ and drops sharply to zero 
in one “mesh width” surrounding 0’. Substituting 0 for @J in Eq. (18) gives 

I r+L),Q(u-uo)=Atjr+D, By(B-u)-Atj DVQ.Vu. (21) I- 
where r is a narrow strip surrounding Q’. The boundary term of Eq. (18) vanishes 
since 0 = 0 on XI. Equation (21) states that the energy change equals that 
exchanged with the electrons plus the flux transported through the “surface” of the 
volume, I-. Consider two quadrilaterals, ql, with vertices A, . . . . F, Fig. 1. Assume 
0 = 1 at points C, D and vanishes at the other vertices. Then, 

F,=At 
s 

DV8 . Vu 
41 

FIG. 1. Two adjoming quadrilaterals. 
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is the energy flux entering q, from q2. It need not equal 

F,=At 
s 

DVO.Vu, 
y2 

the flux entering q2 from q,. Since the flux across the line CD is required, we 
average, F= (F, + F2)/2, to define the flux between the two zones. These flux edits 
are computed from the stress matrix elements, S, a posteriori. 

3. COUPLING OF FE TO OTHER PHYSICS 

This section describes procedures required to conform with a Lagrangian 
environment in which the variables have zonal definitions. 

3.1. Retriangulation 

In the FE formulation, each quadrilateral is bisected into triangles. Initially, the 
possibly nonorthogonal quadrilaterals are bisected by a strategy which strives to 
guarantee a stable and accurate difference approximation (see below). However, 
Lagrangian hydrodynamics distorts the mesh. Some quadrilaterals may become so 
distorted as to cause the integration routines to compute negative areas for the 
triangles. The mesh is monitored, and retriangulated if necessary. Retriangulation 
must be accompanied by redefining the nodal variables, u, and T,, in order to 
conserve energy. 

Consider retriangulating one quadrilateral, Fig. 2. Let u = x:=, #,4,(x) and 
u’ = c,“=, u; I,+,(X) respectively denote the representation before and after 
retriangulating. We seek the values u; that minimize E= j (U-U’)* dx, with the 
constraint that energy be conserved, i.e., 5 u dx = J u’ dx. The integrals are done 
over the quadrilateral. If A is a Lagrange multiplier; minimize E+ 2A J (u - u’) with 
respect to u’ = (u:):=, for some value A. The minimization gives the system 

Mu’-Nu-h’=O, (22) 

where M,, , = C.f tiklc/,), N/c, I = Cj $,c 40, and OJ = J II/,. Equation (22) is solved for u’ 
and dotted with co’. If w, = J d,,, the constraint implies w’ . II’ = cc. u. This 

FIG. 2. Retriangulation of quadrilateral. 
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substitution gives an equation for 1; the result can be expressed as a linear system 
for the new point values, 

Mu’=Nu+(o’.M-‘co’)-‘(o.u-o’.Mp’Nu)d. 

The procedure can be modified if instead of the L* norm, one minimizes the H’ 
norm. 

If several quadrilaterals need to be retriangulated, the algorithm is extended. In 
general, each grid point, x,, is a vertex of four quadrilaterals ql, i = 1, . . . . 4. Four 
copies of u,, (u,, )P= , , of each grid value are made. The above algorithm generates 
new grid values u;, on quadrilaterals requiring retriangulation. The new grid values 
are recombined by averaging, 

(23) 

where support (tijl) = ith quadrilateral. Equation (23) is appropriately modified for 
the old nodal temperature since c,. T is the quantity to be conserved. 

The following criterion is used to determine if a zone warrants retriangulating. 
Each quadrilateral is first bisected according to its existing prescription, then 
bisected according to the opposite one. For each case the radius of the smaller 
inscribed circle is computed. The two radii are then compared. Let rmrn, , and rmln, z 
respectively denote the minimum radii for the existing and opposite triangulation 
and let s, be a constant. If rmln. 1 <s,.r,,,. z a zone is tagged for retriangulation. The 
switch factor, s,., is an input quantity. Clearly, 0 <s,, d 1. Values of s,, z 1 may 
cause an undesirable number of retriangulations and lead to numerical diffusion. 
Typically, s,. =0.8. Experience has shown that if s,, is too small ( zOS), the 
triangles may get significantly distorted before they are retriangulated. These 
distortions cause large obtuse angles destroying the M-matrix property of the 
diffusion matrix, S; see Section 2.1. 

3.2. Zonal-Nodal Temperature Mapping 

At the end of the time step, the nodal values u; and 7J’ are stored. The required 
zonal quantities are obtained from Eq. (10). A number of processes may alter the 
zonal temperature before the start of the next radiation cycle. For example, Q in 
Eq. (2) may consist of sources of energy to the electrons. Other changes to T may 
be due to PdV work on the electrons by the hydrodynamics. Another example is 
subtler. The program strives to conserve energy. Electron energies, zonal quantities, 
are stored. These change as the calculation proceeds, e.g., the radiation field 
exchanges energy with the electrons. Although a problem may consist of several 
materials, each with its own equation of state, EOS, zones demarcate them. Thus, 
one node may be at the boundary of disparate materials. If left unchecked, the 
zonal temperature may stray from the value necessary to give an EOS value, 
ElT, p) that agrees with the stored zonal energy. Consequently, at the start of each 
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cycle, one Newton iteration of the following equation is made to “redefine” the 
zonal temperature 

E-E,,,=@ dT(T’;- Tz). (24) 

In Eq. (24) the lhs is the difference between the zonal electron energy and its EOS 
value; energy exchanged with the radiation is a constituent of E. The rhs of Eq. (24) 
multiplies the zonal heat capacity by the necessary temperature difference; TL is the 
new zonal temperature. 

At the start of the radiation transport these changes need to be reflected in the 
nodal values, i.e., a mapping from the zones to the points. Such a mapping is 
extraneous to the main theme of this paper, and the subject did not arise in any of 
our idealized test problems. However, the mapping is a crucial part of any “real” 
physics calculation. Experience has shown how seemingly reasonable choices lead 
to disaster. The difficulty may be appreciated by a 1D example. 

Assume an infinite domain discretized by a constant mesh width Ax= 1. Let 
T;+ 1,~ denote the result of Eq. (24); it represents the zonal temperature for 
jgx<j+ 1. Assume T;,,!, is zero everywhere except Tijr = 1, and that dE/dT= 1 
everywhere. Ideally, one desires a nodal temperature Ti ( = T(x,), where x, =j) 
which is generated by T;+ ,iz and returns this value after the point to zone mapping 
Eq. (10). For the T;, ,,z described above, the result is unacceptable and obviously 
non-physical since Tb = 1, TJ = 1 if j =.2k - 1, and T; = - 1 if j = 2k, where j = 1, 2, 
3, . . . A similar sawtooth behavior is found for negative indices. A better choice 
would be r; = + if j= 0, 1 and zero for all other values. Yet, this diffuses the 
temperature difference in one zone to three. Subsequently, iterations of Eq. (24) in 
later cycles try to realign the zonal temperature and introduce other sawtooth 
profiles. The difficulty lies in attempting to express a discontinuous (zonal) 
function, r=, by a continuous (nodal) one, q. 

The scheme presented below has allowed us to obtain useful results on “real” 
problems, yet it does share some of the undesirable sawtooth behavior described 
above. Work on improvements is continuing. 

The radiation cycle occurs after the Lagrangian displacement of the mesh. New 
basis functions are computed using the old triangulation prescription. The convec- 
tion of radiation is accomplished by dividing the old radiation energy at a point, 
u-, J $‘, by the newly computed basis function, f 4,. Retriangulation and subsequent 
redefinition of the nodal values is then done to obtain a better discretization of the 
domain. Let u;‘, q denote these nodal values, and let c denote the zonal average 
of q per Eq. (10). In general, c does not equal T;, the result of Eq. (24). The 
zonal temperature difference AT= Tl- c must be broadcast to the points. 

The mapping maps the zonal energy change, (dE/dT), AT, to the points. 
Sawtooth behavior is minimized by passing the result through a filter which does 
not allow the creation of local extrema unless they are present in q or rl-. In 1D 
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let q+ I;* and TJ+ li2 represent the zonal temperatures. Define the zonal specific 
heat, c c.,+ I!21 

(x /+1--J ’ )C,..,+,:2=(d’/dT)J+,:2 

and the point heat capacity, 

a,= dJcI,. I 

An intermediate nodal temperature, 7, is computed using 

a,(T~-r:)=c,.,J-,:,(T~-,;,-T;-,~2)1~ ~J+C~.J+,:~(T;+,:~-~+,:~)CII+‘~,. 
.I, - I 5 

(25) 

This equation may generate unphysical extrema. Physical extremal values are 
determined from the old and new zonal temperatures, 

r,. y = m&T:, Ti, Ij2) and T,,.=min(q, TJ,,j2). t-26) 

These are used to filter the results of Eq. (25): 

if T; > T,. ~ 
if Ti < T,, n 
otherwise. 

(27) 

The filter violates energy conservation. However, the single iteration of Eq. (24) for 
c does not generate an energy conserving temperature either. Thus, we rely on 
subsequent time steps to converge to the correct T. In a rapidly changing problem, 
the temperature will be out of alignment with the energy. Boundary conditions 
modify the extremal filters used in Eq. (27). 

The mapping concludes by computing a temperature change per group. 

AT;=(y’- 7J’)/N,, 

where N,, is the number of frequency groups. The partial temperature scheme, 
which cycles through the groups, advances q + AT to obtain the temperature at 
the end of the cycle. In this manner, large temperature changes are distributed con- 
tinuously to the groups. That is, if the ith group is being computed then q + AT is 
used to obtain the intermediate temperature T,-see discussion following Eq. (4). 

3.3. F1u.u Limiter and Positiuity Controls 

In this section, we describe several features of the diffusion package required to 
obtain physically acceptable results. The radiation diffusion equations are derived 
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in the limit of near isotropy. Thus, the radiation mean free path, I,,, should be con- 
siderably shorter than the characteristic length scale of the problem. Nevertheless, 
these equations can give meaningful results in other regimes. Consequently, the 
equations are modified in order that they not violate physical expectations. The 
radiation flux, DVu, must be bounded by the limit imposed if all the energy were to 
flow in one direction, e.g., CU. However, if I, is longer than the characteristic 
gradient length of II (Vu z u/d), anomalously large flux results and DVu/cu b 1. The 
diffusion coefficient is modified as 

D= c/(3/1 + max(0, IVul/u)) or 
c/max(3/1, W/u), 

(28) 

where I and u depend on v. The coefficient D is constant on each triangle; u in Eqs. 
(28) is the average value on the triangle (equal to one-third the sum of its nodal 
values). The coefficient is explicit, i.e., at the nth time level, z/ ~ ’ is used to evaluate 
D. The term, max(O, IVul/u) in Eq. (28) maintains D positive; it turns off the flux 
limiter whenever u is negative. The second alternative of Eq. (28) generates more 
flux. It compares better to some 1D transport calculations for optically thin 
problems (I,. $ AX). 

Flux limiters are only tangentionally involved with our presentation yet they are 
principal subjects of entire other papers. The reader interested in this subject is 
directed to the works of Levermore and Pomraning [5] and Levermore [6] and to 
the references cited therein. Flux limiters, such as those suggested by Levermore, 
will be incorporated in the FE program. 

Negative energies often arise at the foot of steep fronts whenever the mesh is 
badly skewed, since the resulting matrix may no longer be monotone. Two choices 
allow the user to control the calculation. One scans the energies after they have 
been computed and zeroes those values which are negative. The other examines the 
energies before they are advanced and zeroes the coupling coefficient, yy, wherever 
the old energy densities are negative. The effect of the first removes the unphysical 
values from the problem. It gives good results on some problems. However, it 
violates energy conservation as the negative values are the algebraically correct 
solutions to the discretized operator. Excessive usage may generate “reasonable” 
solutions yet the energy check may show errors of order 1. The second choice has 
the heuristic appeal that the unphysical negative energies are not allowed to drag 
down T,. Hopefully, the positive energies that constitute the thermal front will 
diffuse and raise the negative values above zero. However, for thermal wave 
problems similar to those described in the next section, we instead observe that the 
spurious negative values propagate out ahead of the wave effectively lowering the 
radiation temperature, T, in the material; T, then is out of equilibrium with T, and, 
as discussed above, the zeroed coupling coefficient prevents equilibration. We prefer 
the first choice, but monitor the energy check. 

The problem of minimizing the occurrence of negative energies is considered by 
Pert [7] who scans the diffusion matrix and modifies elements that may give 
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unphysical extrema. We instead strive to generate monotone matrices. Lumped 
mass matrices and a triangulation strategy that minimizes the occurrence of obtuse 
angles inhibits the generation of negative values. However, if some arise, the choices 
cited above are provided. 

4. NUMERICAL RESULTS 

Here we present and compare FE with FD, the zonal finite difference scheme 
described in Ref. [I]. In the first subsection, three problems with known analytic 
solutions are computed. In the second, a multigroup calculation is presented. The 
units used are those described in Section 1 (c = 300). 

4.1. Idealized Test Problems 

Three test problems are presented in order of increasing complexity. For these 
cases, the mesh is fixed but “random.” It is depicted in Fig. 3 where 0 Q R, Z 6 1; Z 
is the abscissa and R is the ordinate. A total of 33 x 33 grid points are initialized. 
The initial and boundary conditions are those of a 1D problem. The purpose is to 
determine what effect the distorted mesh has on the solution. Only one frequency 
group is considered; operators P and Q in Eqs. (I) and (2) are neglected. 

In the first two examples, 7 = 0 and I = 0.055; i.e., only linear radiation diffusion is 
modeled. The grid is defined by a logical rectangle of (K, L) lines. 

For the first problem, we compute the steady state solution which is linear in Z. 
In this case, FE computes the exact solution regardless of mesh distortion. We use 
KMAX= LMAX= 33, the lines K= 1 and KMAX respectively &fine R = 1 and 0 

FIG. 3. Random grid on unkt square In (R, Z) space; Z is the abscissa, R IS the ordinate. 
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while the lines L = 1 and LMAX define Z = 0 and 1. The initial condition is u z 0. 
Boundary conditions are au/an = 0 at R = 0 and K = 1, and u = 1 at Z = 1. A Milne 
condition, u + (21/3) au/h = 0, holds at Z= 0. In Fig. 4, the steady state flux, 
fMu/dn, is plotted vs. K along Z = 0. Note the variation of the FD solution. FE is a 
dramatic improvement; however, this is not a fair comparison due to the linearity 
of the steady state solution which FE is guaranteed to compute. 

In the second problem, neither method is exact. We compute diffusion in 
spherical symmetry, 

S,u = (l/r’) a,( (~-f/3) r2 d,u), 

where r is the spherical radius. The computational domain is 0 d r < 1 and 
7r/4 d 19 6 7r/2, where 8 is the polar angle. Symmetry conditions hold at 0 = 7c/4, 7r/2 
and a Milne condition is imposed along r = 1; at r = 0, 8,~ = 0. The problem is 
initialized with the analytic eigenfunction which is determined using separation of 
variables. Let 

u= V(r) W(t); (29) 

17 

R- plot rFlx~l2:33.11 b5. floatl2:33r 

FIG. 4. Problem 1. Steady state flux vs index K along Z = 0; A - FD solution, E - FE solution. 
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V solves a second-order ode and 

w= wOe-c”d2.3. 

Changing variables, .‘c = dr, J = r”* V, gives Bessel’s equation, 

2y” + xy’ + (x2 - (‘)2) v =o. 2 _ 

403 

(30) 

The solution J,,, - x ‘Q sin .Y satisfies the boundary condition at r = 0. The Mime 
condition, V + (21/3) v’ = 0 gives the equation for d, 

tan d = -2id/3. (31) 

We choose the first positive root; using I= 0.005, d = 3.1311558464015. In terms 
of r, 

V(r) = yp’;* y(x) = dm-‘.‘2 r-’ sin dr. (32) 

The solution is given by Eqs. (29), (30), and (32). The total energy is 

E(t) = 271 i’ r* u(r, t) dr lx’* sinBd~=(-,,hn(l+21/3)d~3’2cosd) W(t), 
0 R.‘4 

after invoking Eq. (31). If W, = 1, 

E(0) = E, - 0.8045062671. 

The calculation is run until t, = 0.20113777 z one e-folding time. The remaining 
energy is 

E( t , ) = E, = 0.3730693 E, = 0.3001366. 

The flux along r = 1 is 

S,(t)= +,,,,=,= -$:*(I +21/3)cosd 
( > 

W(t) 

in units of energy per square centimeters per time. At t = t,, 

S,(r,)=0.8876544479 W(t,)=0.3311567. (33) 

The above analytic solution is compared with computer runs which are obtained 
on a “random” mesh. The initial time step is dt, = 10P3, but the program increases 
the time step by 10% if the temperatures do not vary much. The runs conclude 
after 32 cycles, when At has grown to 0.0191943. Although some discrepancies 
between the numerical and analytic results may be due to the implicit temporal 
differencing, variations from spherical symmetry are due to the distorted mesh. The 
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improvement in FE over FD is demonstrated by comparing the final fluxes along 
r = 1 on the random meshes. 

The grid is generated by a mapping 

R , = R&/m& Z, = Z, R&/m0 , (34) 

where 0 6 Ro, Z, < 1. The random grid of Fig. 3 generates another in the region: 
0 <JR= < 1 and 1rc/4 < tan- ‘(RJZ,) < ~12. Figure 5 displays the new grid. 
The mapping concentrates more points near the 0 = 7r/4 boundary. 

This example demonstrates the versatility of the FE subroutine. Since nodal 
values are computed, some modification of the matrix is required at the “center 
point” R, = Z, = 0. This point lies along the K = KMAX “line”; thus, LMAX copies 
of the energy density are computed. The modification ensures that all copies are 
equal. The fully implicit discretization of U, = V. (DVu) generates a linear system, 
Eq. ( 13). The system is normalized by computing a, = max,( A,,), where A,, are the 
diagonal elements. The system is then multiplied by a;’ ensuring that some 

II 
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.90 

.70 

.60 

.50 

.30 

S&O” 
v 

~r,d k. I. 33. I I. 1. 33. I 

a fr 

FIG. 5. Problems 2 and 3. Random computatlonal grid; 2 is the absctssa, A is the ordinate. 
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diagonal element equals one. To modify the matrix, assume the unknowns {u, k 2 F 
represent the k copies. Consider the ith equation, 

. ..b.-,u,-, +u,u,+b,u,+,+ ... =s,, 

where j+ 1 < i<j+ k- I. Since u,-, should equal u,, 106a,- ,(u,+, -u,)=O is 
added to the i- lth equation. This relationship and 106aL(u, - u,, ,) = 0 is also 
added to the ith; the modified ith equation is 

Similar modifications are made to the remaining k-j- 1 rows. Note that the 
matrix remains symmetric. 

The fluxes along r = 1 are plotted in Fig. 6 for both FE and FD methods. Results 
were obtained on the 33 x 33 grid of Fig. 5. The FE energies are initialized with the 
analytic solution, Eq. (29), evaluated at the grid points. The initial FD energies are 
obtained by first computing the quadrilateral center as described by Kershaw [I, 
p. 3771. The analytic solution is then evaluated at those centers. Note the greater 
variation of FD in Fig. 6. Indeed, if F,, F,, are respectively the maximum and 
minimum numerical values for the flux along r = 1, then the relative differences, 

r/ = 2(F., - F,,MF, + F,,), (35) 

are respectively rL D = 1.165 and rl, E = 0.022 for FD and FE. For comparison 
purposes, FD results on a 33 x 33 grid with constant Ar and A@ give a flux of 

E5 
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FIG. 6. Problem 2. Flux YS index L along r = I; n - FD solution, h - FE solution. 
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S, = 0.33943. Differences between this and Eq. (33) are attributed to errors in At 
and to a lesser extent, mesh size. 

The third test problem is a one-dimensional thermal wave. In Eqs. ( 1) and (2) 
neglect P and Q. Assume J is the basic unit of energy and a is in units of J keVp4. 
Let B,,(T) = v3/(e’!‘- 1 ), in units of keV3. Choose a sufficiently large Y, to encom- 
pass the spectrum. Integrate Eq. (1) from 0 to v,, multiply by CL and express 

I 
1’1 

K’ = CI u, dv, units( MT) = J. 
0 

Define a frequency averaged coupling coefficient, 

aj-dvv,(B,(T)-u,,)=y r~T~,‘~“$$-w). 
0 

For large v,, and T< 1, sr’ z 12 = 7c4/15. These definitions reduce Eqs. (1) and (2) 
to a set of frequency averaged equations, 

8,~ = cY~(D~,w) + y(a, T4 - iv) (36) 

c, 8, T= +a, T4 - MI), (37) 

where CI, = un4/15 = 0.0137 J ke V-4; D = cl/3 and y = c/l are defined in terms of a 
frequency averaged mean free path, 1. 

Solve Eq. (37) for W, substitute the result into Eq. (36), and derive a single 
equation for T, 

(38) 

In the strong coupling limit, 

a,TeyT, (39) 

the first term of Eq. (38) is dominated by the third; the case of small 1. If the 
radiation energy is negligible when compared to the matter energy, 

4u, T’ 4 c,, (40) 

the second term of Eq. (38) is dominated by the third. If the coupling time 
multiplied by the change of the matter energy with respect to time is dominated by 
the radiation energy, 

:a,T4a,T4, (41) 
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the fourth term of Eq. (38) is dropped in favor of the fifth. Equations (39)-(41) 
reduce Eq. (38) to the thermal wave equation considered in Ref. [8], 

d,T=a&(T3d,T), a = 4c(,c1/3c,. (42) 

For the numerical test, Eqs. (5) and (6) are solved on the domain: 1 <R < 2, 
0 = Z, < Z < Z, = 2.09375. Along Z = Z, and Z,, L = 1 and LMAX; along R = 1 
and 2, K= KMAX and 1, respectively. In this problem KMAX= 33 and 
LMAX= 68. The grid is assembled from two 33 x 33 random meshes shown in 
Fig. 3: one for 0.00625 dZ<Z, = 1.0625 and another for 1.09375 <ZdZ,. 
Elucidation for choosing such a domain follows. Only one frequency group is used, 
dv = V, = 20. The numerical flux is computed along the straight grid line Z = Z, . 

The solution for a plane source, r(t = 0) = Q&Z) is self-similar, and is given 
analytically [S]. It is characterized by a front position z,(t) - t”’ and the value at 
the symmetry plane, T, - z; ‘. We choose I = 0.001 and c, = 50; hence, D = 0.1, 
y=3x105 and a = 1.096 x 10-j. Symmetry conditions (au/&r = 0) are imposed 
along R = 1 and 2 and along Z,. A Milne condition holds along Z = Z,. The 
numerical solution loses physical significance when the front arrives at Z = Z,. At 
t = 0, T and u are nonzero only along Z= Z,. Initially, the functions are in 
equilibrium, MI = LX, P, and are independent of R. The thermal wave solution is 
completely determined once the total heat Q, 

Q+z(T+;), 
c 

is specified, for this quantity is conserved by Eqs. (36) and (37). For the numerical 
domain, Z = 0 and Z = AZ = & are straight grid lines. In the range 0 < Z < AZ, AR 
( = $) is held c onstant. The random grid begins at Z = 242. This ensures that the 
total heat per point is independent of R at the initial time. Omitting this, i.e., 
starting the random grid at Z = 0 creates a thermal wave propagation velocity that 
is not independent of R for early times. Setting T= T,(t = 0) = 1 and zero 
everywhere else gives Q =0.031258562. Since T only decays, the choice for c, 
assures that Eq. (40) is always satisfied. Using the dimensional argument, 
T+ T, +q’-t-L.‘s, we derive analogs of Eq. (39) 

16 5yt Pa) 

and of Eq. (41) 

The choice for c, implies that Eq. (39a) holds whenever Eq. (41a) does. The latter 
implies 

2.9x lo-‘$t. 
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That is, the solution of Eqs. (36) and (37) or equivalently Eqs. (5) and (6) will only 
fail to equal the solution of Eq. (38) at very early times. The numerical problem, 
however, may be considered to start not at t = 0, but at that time for which zI= & 
which is considerably longer than the numerical value in the last equation. 

A comparison of FE with the analytic solution is given in Figs. 7 and 8. Figure 7 
plots the temperature vs. Z along R = 1 at t % 6.995 x lo*. The profile agrees with 
the analytic function. Figure 8 plots the time history of the flux across Z = Z, . The 
numerical results of Fig. 8 display the radiation flux, f, vs. time, where 

.f = -27~~ jI RdR j;’ DVu hf. 

The stong coupling assumption, Eq. (39a), implies u = B(T). This gives an 
expression for f in terms of T, 

f= -4nci,clT’&T. 

The flux corresponding to Eq. (39) is S= -aT3 a,T. Thus, f = 3nc,,S. Along 
Z = Z, , the analytic flux peaks at t = 7.522 x 10’ and S,,, = 2.1751 x 10 ~ I2 which 
translates to fmax = 37cc, S,,, = 1.02499 x 10P9. At I = 7.5948 x lo’, FE computes a 
numerical flux off,,,, numer = 9.969 x 10 ~ lo or 2.7% less. 

Running the FD scheme on this problem gave answers that also compared very 
well with the analytic function. The FD flux across Z = Z, peaks at t % 7.9 x 10’ 
giving fnumer zz 1.02 x 10 9, very nearly the analytic maximum. However, a time 
history of the FD flux has an incorrect “double peaked’ probile, the earlier peak 
occurring at t % 6.7 x lo8 for which f 2 1.00 x 10P9. Computing the relative differen- 
ces of the fluxes, Eq. (35), along Z = Z,, FD gives r,, D = 1.05 at t = 6.89 x lo8 while 
FE gives r,: E= 0.76 at t = 6.99 x 10’. The improvement in symmetry by the FE 
scheme is noticeable but not as dramatic. We hypothesize that the strong coupling 
in this problem, y s D, reduces the importance of accurately computing the 
transport term. 

4.2. Radiative Cooling of a Sphere of Hot Air 

In this section the FE and FD schemes are compared on a multigroup problem. 
We model the sudden cooling of a hot sphere of air by radiative transport [9]. The 
problem is simplified in order to underscore the differences in the performances of 
the two methods. 

The domain consists of a similar spherical section as for the second problem 
except 0 d r d 10 cm, where r is the spherical radius. Boundary conditions are as 
before; symmetry holds along 8 = n/4 and n/2 and a Milne condition is imposed 
along the outer edge of the sphere. All physical processes except those described in 
Eqs. (1) and (2) are neglected. Runs are made on both an orthogonal mesh 
(constant Ar and AO) and the random one described above. The flux limiter is shut 
Off. 
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At f = 0, the radiation field is in equilibrium with the matter, T, = T, = 0.9 eV. At 
this temperature the matter is transparent to the bulk of the radiation. The 
opacities are those given Johnston and Stevenson [lo]. Figure 9 displays K,, vs 
photon energy (i.e., frequency). The radiation field has the Planck distribution 
depicted in Fig. 10. The density is p = 0.001293 gm/cm3. The Rosseland averaged 
mean free path is IR = 10.031 cm. The problem is obviously dominated by transport. 
The initial energy in the radiation field is 1.331 x lo5 ergs. The runs begin with 
At = lop6 and the time step is allowed to increase by 33% each cycle. The 
calculations are halted after 31 cycles at r z 0.020933. The photon energy spectrum 
is divided into 30 logarithmically spaced groups with vMAX =0.2 keV and 
L’, = lo-’ keV. Figure 9 shows that the opacities are not experimentally tabulated 
below r = lo-*. Hence, we could run with a significantly higher value for v,. This 
has no effect on the comparisons; at the lower frequencies, the opacities are 
effectively independent of the frequency. 

13 

FIG. 9. Problem 4. Opacity (cm*/g) is the abscissa, photon energy (keV) is the ordmate. 
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FIG. 10. Problem 4. Photon energy density distribution (ergs x 1016/cm’/keV) is the abscissa, photon 
energy (keV) is the ordinate. 

During the run, the radiation field loses more than 38% of its energy while T, 
remains relatively unchanged. Hence, the opacities of Fig. 9 remain constant for the 
duration of the run. The total energy fluence leaving the problem, however, is over 
half that of the original radiation energy. Approximately 30% of the fluence comes 
from the electrons which have a considerably larger reservoir of energy. 

Results are displayed in Table II. Run names beginning with “d” or “e” respec- 
tively categorize the FD or FE schemes. The second character, “0” or “r“’ denotes 
an orthogonal or a random mesh. The last two numbers, “33” or “65,” define the 
mesh size, 33 x 33 or 65 x 65. The runs on the large mesh are used to benchmark 
the solution; note the good agreement between “do65” and “eo65.” 

It is interesting to examine Table II. On a random mesh, FD has tremendous 
variations between zones, yet the domain averaged answers are surprisingly good. 
The fluxes, in particular, vary nearly an order of magnitude along the outer edge 
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Run -5 

TABLE II 

Comparison of Runs on Problem 4 at r = 0.020932643 

Flxc (r = IO) Flue (r = 10) 7-, (r= 10) Fix (r= 10) 

do33 8.203 + 4 27891 f6 72415f4 0.75610 6.278 + 3 
dr33 7 904 2 9075 7 6737 0 7483 to 0 7407 17.84 to 2.109 
do65 8 156 28109 7.3175 0 75182 6.326 
eo33 8.107 2.8472 7.4243 0.75242 6.408 
er33 8 103 2 8456 74216 0.7557 to 0.7493 6.419 to 6.392 
eo65 8.109 2.8421 74126 0.74989 6.397 

Nore. Variables and units: E,(ergs), radiation energy m domam; Flxc (ergs/r), net escaped flux; 
Flue (ergs), net escaped fluence; T, (eV). radtatton temperature per zone or pomt along r = 10; FIX 
(ergs/cm’,!r), flux per zone or pomt along r = 10. Notation m tirst row’ 8.203 + 4 signifies 8.203 x 10’. 
Orders of magmtude are the same for the column entrtes, t.e , E, for eo65 is 8.109 x 10’ ergs. 

(r= lo), yet the total flux and fluence are respectively only 4% and 6% greater 
than “do33.” The FE method is considerably better behaved. The relative differen- 
ces, Eq. (35), in the fluxes are respectively 1.57 and 0.004 for the FD and FE 
methods, a dramatic improvement. In addition, FE is apparently more accurate on 
the orthogonal mesh for its results on “033” and “065” are nearly identical. For 
this transport-dominated problem the increased accuracy of FE is self-evident. 

5. CONCLUSION 

We have presented a diffusion scheme using the finite element method which may 
be integrated into a Lagrangian hydrodynamic code. Results on test problems on 
fixed but irregular meshes illustrate the increased accuracy of FE. In contrast to the 
usual zone-averaged methods the method calculates nodal quantities. Care must be 
exercised in coupling to other zonal variables. In particular, straightforward 
coupling to a zonal electron temperature can result in anomalously large diffusion. 
It is fair to end with a word of caution. The FE method is based on triangles and 
does not rely on mapping to a logical (K, L) space. Hence, it will not maintain the 
exact symmetry that the FD scheme preserves when it is used on orthogonal 
meshes. In particular, an alternating bisection strategy for the quadrilaterals is 
implemented at initialization in regions where the grid lines are straight. This 
prevents the calculation from developing a “bias.” 

We end with a few words about comparative timings. We have not noticed a 
significant difference in the running times between the FE and FD schemes. The 
two are usually within 20% of each other. For some problems, FE is faster; for 
others slower. We recall that the nodal FE is being compared to a zonal one. A 
problem of KMAX x LMAX grid points has to update that many nodal values, but 
encloses only KMAXx LMAX-( KMAX+ LMAX-1) zones. When KMAX and 
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LMAX are both large the difference is insignificant. The difference increases as one 
problem dimension is much larger than the other. For the extreme case, e.g., 
KMAX= 2, there are over twice as many points as zones. However, in that case, 
the problem is one-dimensional and an appropriate one-dimensional FE scheme 
should be used. 
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